
Kinsing
Demystified
A Comprehensive Technical Guide

2

03

04

07
07

31

46

Applications Kinsing Target (Vulnerabilities and Misconfigurations)22

Kinsing’s victims in the wild (OSINT)23

Table of Contents

32
32 Type I Scripts – comprehensive analysis

35 Type II Scripts – comprehensive analysis

37 Auxiliary scripts analysis

3

Executive summary
Kinsing first surfaced as a cybersecurity threat in 2019 and quickly became a widespread
concern, attacking various applications globally. Despite extensive analysis by security
professionals, little has changed, and as of 2024, new insights continue to emerge about the
Kinsing operation, providing strategies for security teams to better mitigate associated risks.

Since its initial appearance, Kinsing’s modus operandi has largely remained unchanged. It
typically exploits vulnerable or misconfigured applications, executes an infection script, runs
a cryptominer—often concealed by a rootkit—and maintains control over the server using the
Kinsing malware. However, it raises the question: What precisely is Kinsing? Is it the name of the
malware, the threat actor behind it, or both? Our research indicates that there is more to learn
about this significant threat.

Organizations that learn from past interactions and adapt to the ever-changing threat landscape
are better equipped to counter the enduring threat posed by Kinsing and similar adversaries. This
report provides:

• An acknowledgment that defenders have less time than anticipated to address vulnerabilities
and must take further steps to protect their environments.

• A detailed list of the applications and environments targeted by Kinsing.
• An in-depth analysis of Kinsing’s techniques, tactics, and procedures.
• An examination of changing attack trends, the evolution of attack patterns, and the rapid

incorporation of new vulnerabilities upon their discovery.

Understanding Kinsing’s history is fundamental for devising effective defense strategies. Although
regular software updates, and vigilant monitoring are critical for mitigating risks and guarding
against this persistent threat, these measures alone are insufficient. Implementing runtime
behavioral controls to enhance a defense-in-depth strategy is crucial. The historical data on the
Kinsing malware highlights the continuous need for alertness, resilience, and collaboration within
the cybersecurity community.

Executive summary

4

Introduction
To provide an accurate sense of the interest in Kinsing, a search for “kinsing” on Google yields
over 180,000 results. Google Trends indicates that interest in Kinsing began in 2019, with
the most significant spike in January 2020, followed by notable peaks in October 2021 and
September 2023. These spikes correspond to various reports about specific applications
targeted by Kinsing, such as Openfire.

What Exactly is Kinsing?
Is it the moniker of the malware, the threat actor, or both, as some articles suggest? Despite
numerous reports, our research reveals that there is still significant information to be added to the
body of knowledge.

The most effective way to understand threat actors’ campaigns is to comprehensively review
available reports online. This was our initial step. Although we have been tracking Kinsing
campaigns since their inception in 2019, we aimed to assimilate all possible insights from the
cybersecurity community. We carefully analyzed select publications from our colleagues in the
industry. Some of these works are exceptional pieces of research that illuminate various facets of
Kinsing’s activities. Nevertheless, we sensed that the full picture was not yet complete. Our review
allowed us to consolidate our understanding of Kinsing.

TrustedSec was the first to report on Kinsing, on January 15, 2020, detailing an attack that
exploited CVE-2019-19781 against Citrix NetScaler for remote code execution. Until this report,
the connection between the Citrix attack and Kinsing had not been made. However, we managed
to retrieve the ci.sh script from Kinsing’s current C2 server, maintaining access even as the
threat actor frequently changed download servers throughout our investigation. This script
remained on the download server, unlike some (e.g., rv.sh) that were omitted from newer server
versions. Alibaba Cloud’s security team, often credited as the initial reporters on Kinsing, followed
on January 16, 2020, referring to it as h2Miner.

Our team, Aqua Nautilus, was the first to name the malware “Kinsing” in a report in April 2020
— a name that has since been widely adopted. The first known attack was actually against our
misconfigured Docker API on December 15, 2019. Other reports corroborate that December 2019
marked Kinsing’s emergence in its current campaign.

In November 2020, TrendMicro published a thorough report analyzing Kinsing’s rootkit. The
researchers provided an in-depth analysis of both the download script and the rootkit. Our
analysis confirmed their findings regarding the rootkit’s structure and functionality.

In September 2021, CyberArk published a detailed comparison between the NSPPS malware and
Kinsing malware, highlighting significant similarities in code structure, RC4 encryption keys, and
function names, while also noting some differences. Their conclusion was that despite these
differences, the similarities indicate that both malwares belong to the same family. NSPPS seems
to be an earlier version with remote access Trojan (RAT) functionality, while Kinsing is a more
recent variant with added cryptomining features and other functionalities. These similarities aid
researchers in the analysis and detection process.

Introduction

https://www.aquasec.com/blog/threat-alert-kinsing-malware-container-vulnerability/

5

Throughout Kinsing’s active period (2019-23), many publications have detailed specific attacks
targeting a variety of vulnerabilities, misconfigurations, and environments. These include:

• Liferay CVE-2020-796 (Redteam PL)
• Unauthenticated Redis servers (TrendMicro)
• Oracle WebLogic CVE-2020-14883 (Akamai)
• Log4Shell CVE-2021-44228 (Zscaler)
• Confluence - CVE-2022-26134 (Lacework)
• Citrix ADC - CVE-2019-19781 and SaltStack - CVE-2020-11651/2 (Red Canary)
• Kubernetes (Microsoft)
• Apache Nifi (Sans), and many others.

In addition, comprehensive reports like the one from Cysiv have linked several vulnerabilities,
showcasing the breadth and depth of Kinsing’s exploits.

While we can’t cover every blog, this selection highlights the wealth of write-ups, knowledge,
and interest in Kinsing. Its persistent presence across our various honeypots piqued our curiosity.
We started to probe deeper, asking questions like whether Kinsing is the work of a single threat
actor or if its source code was leaked, leading to its widespread use. We inquired about Kinsing’s
operations, target scope, primary objectives, infrastructure details, the possibility of it being a
botnet (as it appeared in some publications), and more. We didn’t find a singular answer.

The infrastructure choices that we observed when gathering information may suggest a
connection to Russian-speaking countries, which could imply Russian origins for the threat actor,
while the frequent targeting of Chinese servers could suggest Chinese origins.

Introduction

https://blog.redteam.pl/2020/06/kinsing-malware-liferay.html
http://www.trendmicro.com
https://www.akamai.com/blog/security/Kinsing-evolves-adds-windows-to-attack-list
http://https://www.zscaler.com/blogs/security-research/threatlabz-analysis-log4shell-cve-2021-44228-exploit-attemptshttp://
https://www.lacework.com/blog/kinsing-dark-iot-botnet-among-threats-targeting-cve-2022-26134/
https://redcanary.com/blog/kinsing-malware-citrix-saltstack/
https://techcommunity.microsoft.com/t5/microsoft-defender-for-cloud/initial-access-techniques-in-kubernetes-environments-used-by/ba-p/3697975
https://isc.sans.edu/diary/Your+Business+Data+and+Machine+Learning+at+Risk+Attacks+Against+Apache+NiFi/29900http://
https://www.forescout.com/resources/kinsing-cloud-cryptojacker/

6

FU
N

 FA
C

T

In the Russian language, “Kinsing” doesn’t translate directly to anything meaningful. The name
seems to be derived from English phonetics and is unrelated to any Russian words.

If we were to search for a phonetic similarity in Russian, we could dissect it: “Kin” has no
standalone meaning, but phonetically it could relate to “кин,” a root for Russian verbs associated
with throwing or motion, such as “кинуть” (to throw). “Sing” phonetically resembles “синг,” which
is meaningless in Russian. However, “синий” translates to “blue.” Thus, “kinsing” could whimsically
translate to “blue throw,” which is nonsensical.

Similarly, examining Mandarin for phonetic matches, “Kin” could resemble “金” (jīn), meaning
“gold,” or “金星” (jīnxīng), meaning “Venus,” the planet. “Sing” doesn’t match directly with
Mandarin, but a similar sound, “星” (xīng), means “star.” Hence, “Kinsing” might whimsically be
interpreted as “golden star,” an interpretation we find more appealing. That said, if you know of a
better significance for Kinsing, we encourage you to contact us.

This report represents our endeavor to explore and address the questions surrounding Kinsing.
With the help of the community, we aim to uncover answers and foster a deeper understanding of
the issue. In this paper, we detail the infrastructure and operations of Kinsing, analyze the targets,
and present insights from forum discussions by those who have experienced the impact of Kinsing
firsthand. Our goal is to compile all pertinent information into this comprehensive report, serving
as a valuable resource for anyone with an interest in Kinsing or those who have been affected by
its activities.

Uncovering Kinsing’s Techniques, Tactics and, Procedures

7

Uncovering Kinsing’s Techniques,
Tactics, and Procedures
In this chapter, we review the architecture of Kinsing’s infrastructure. Drawing on various
publications, we aim to provide a more comprehensive understanding of how Kinsing has
operated over the past four years.

In the second section, we delve into the artifacts associated with Kinsing. Here, we enumerate all
the scripts, binaries, and exploits detected in the wild, drawing on data from our honeypots, other
publications, and an extensive investigation of the Kinsing infrastructure.

The third section presents our analysis of a Kinsing malware sample that we collected.

In the fourth section, we offer an analysis of a rootkit sample used in the Kinsing campaign, which
we also collected.

Kinsing’s Architecture
The Kinsing campaign has been operational since 2019, and over this period, many publications
detailing its activities have surfaced. These include in-depth analyses of specific attacks or tools,
as well as comprehensive reports linking multiple attacks. However, there’s a noticeable absence
of a thorough write-up that encompasses the full spectrum of attacks, addresses all components,
and provides a complete overview of Kinsing’s architecture. In this section, we aim to examine the
attack infrastructure and operations of Kinsing, thereby elucidating its architecture.

3. Runs a memory
 resident malware

Vulnerable
Openfire

Victim server

Kinsing’s scan
server

Kinsing’s C2
server

Kinsing’s
Download server

4. Encrypted
 communication

5. Runs a cryptominer
 hidden by rootkit

Figure 1: Kinsing’s Openfire Campaign

Uncovering Kinsing’s Techniques, Tactics and, Procedures

8

Scan and exploit servers: The initial server is responsible for scanning vulnerabilities and
exploiting them. It boasts advanced scanning capabilities, likely employing tools such
as masscan, and possibly has access to server databases such as Zoomeye or Shodan.
While the Kinsing malware includes masscan capabilities, there’s no definitive proof that
the threat actor actively uses this tool.

1

Download servers: These servers act as an intermediary for downloading binaries and
scripts. For instance, the threat actor uses one IP address to download the main payload,
a script that then fetches the Kinsing malware and, occasionally, a rootkit. From another
server, the Kinsing malware downloads a Monero cryptocurrency miner.

2

Command and control (C2) servers: The final element, the C2 server, manages
communication with compromised servers. After deployment, the Kinsing malware
connects with these servers. Historically, from April 2019 to August 2020, the threat actor
communicated directly using an IP address. However, from August 2020 to October 2020,
the Kinsing operator started using the vocaltube.ru website for C2 interactions.

3

This site was registered in August 2020, with the first related VirusTotal event noted in October
2020. This shift in architecture might be a strategy for defense evasion, or it could suggest that
the website was compromised. Although the precise purpose of its usage is unclear, DNS
requests for vocaltube.ru have been detected, along with IP-based communications between the
C2 server and the victim’s machine.

We have identified three primary components in the Kinsing campaigns:

Figure 2: the website under the domain vocaltube.ru (c2 server)

Uncovering Kinsing’s Techniques, Tactics and, Procedures

9

We analyzed the communication with the C2 server. Over three years, we found very little change
in the IP address of the C2 server. When 185.154.53.140 is resolved when vocaltube.ru is queried.

The group of IP addresses used to download the scripts and binaries was a bit bigger (41) and
distributed mostly among Eastern European countries:

Netherlands 10%
Ukraine 20%

Luxembourg 2%
Russia 68%

C2 IP Address ISPCountry Usage in the attacks

1 185.154.53.140 EuroByte LLCRussia 39.4%

7 185.224.212.104 2Day Telecom LLPRussia 0.003%

6 194.169.160.157 Ztv Corp LLCRussia 0.010%

5 109.248.59.253 Russia High Speed Online LLCRussia 0.010%

4 93.189.46.81 Limited Liability Company NTCOMRussia 0.031%

3 185.221.154.208 EuroByte LLCRussia 22.3%

2 212.22.77.79 Cloud Solutions LLCRussia 38.2%

Graph 1: Geo-location distribution of ‘Download servers’

Uncovering Kinsing’s Techniques, Tactics and, Procedures

10

Kinsing’s Attack Tools
We conducted an extensive analysis of the Kinsing C2 artifacts’ download server over four weeks.
During this time, we observed that Kinsing frequently replaced its download servers. To gain
a deeper understanding of the threat actor’s intentions and what they aimed to expose on the
internet as part of their campaign, we executed several queries.

The following are some key stats and insights we gathered during this period:

The campaign has been active since 2019 and
continues to operate.1
The core components of the attack include the Kinsing malware and
a cryptocurrency miner.2
Three distinct groups of artifacts
are identified.3
The campaign targets
75 different applications.4
Each week there was a new script that exploited a new remote code
execution (RCE) vulnerability.5
Kinsing targets applications and infrastructure across the entire cloud software
development life cycle (SDLC).6
Kinsing targets various operating systems with different tools. For instance, Kinsing
often uses shell and Bash scripts to exploit Linux servers. We’ve also seen that Kinsing is
targeting Openfire on Windows servers using a PowerShell script. When running on Unix,
it’s usually looking to download a binary that runs on x86 or arm.

7

Most targeted applications
(91%) are open source.8
While Kinsing mainly targets runtime applications (67%) it also targets various other
areas in cloud native environments, such as CI/CD (Jenkins), APIs (Kubernetes, Docker
daemon), and code.

9

Uncovering Kinsing’s Techniques, Tactics and, Procedures

11

2019: 6

Runtime: 42

Database: 9

Cloud Infrastructure: 8

Code: 1

CI/CD: 1

Security: 1

Open-source: 71

Proprietary Software: 7

Campaign Start Year

Open-Source
or Not

Targeted environment
in the SDLC

2020: 19

2021: 34

2022: 9

2023: 10

In this chart we show the relations between the first time (year) the software was targeted (Left).
Type of software, Open-source or proprietary (Middle), and which environment is targeted in the
Software Development Life Cycle (Right).

Figure 3: Sankey diagram of the campaign year OSS or not and targeted cloud environment. Example:
Postgresql is an open-source database that was first targeted by Kinsing in 2019

Uncovering Kinsing’s Techniques, Tactics and, Procedures

12

Our investigation revealed three distinct groups of artifacts:

Type I and Type II scripts: These are scripts that are downloaded after initial access is gained.
These are the main payload, designed to support the attack by deploying the Kinsing malware, a
cryptominer and often a rootkit, as well as to kill competition and evade detection.

Auxiliary scripts: These scripts are designed to accomplish initial access by exploiting a
vulnerability, prepare the victim’s environment, and deploy a backdoor.

Binaries: These are binaries that take part of the attack as a second payload, such as the Kinsing
malware, the cryptominer, or exploits that are aimed to gain initial access, such as a Java class.

Type I and Type II Scripts – Differences and Commonalities
Both Type I and Type II scripts are designed to operate on compromised servers as primary
payloads, orchestrating the attack. They share common functions, such as downloading attack
components, eliminating competing malware, and evading detection.

However, there are notable differences. Type I scripts resemble a lengthy grocery list, appearing
as a patchwork of snippets that include competition elimination and defense evasion tactics
accumulated over time. In contrast, Type II scripts are more succinct, comprising only 454 lines
compared with the 825 lines in Type I scripts, making them about half the size. As shown in Graph
2, Type I scripts primarily focus on eliminating competition (76%) and dedicate less to defense
evasion. Type II scripts, however, place greater emphasis on defense evasion, both in terms of the
percentage of the script dedicated to this and the actual number of code lines, primarily through
deploying a rootkit.

Initially, we hypothesized that the differences between these script types were due to their age,
presuming that Type I scripts were older than Type II. As supporting evidence, we saw that most
of the recently written scripts were affiliated with the Type II group. However, this wasn’t the case.
We also considered the nature of the targeted systems but found that both scripts target the
same applications, such as Laravel and Postgres. Therefore, the exact reason for the existence of
two script types remains known only to the threat actor.

Type I scripts start with #!/bin/sh while Type II scripts start with #!/bin/bash. While these
might seem like minor textual differences, they actually represent a huge difference. When
comparing two servers, one using sh (the Bourne shell) and the other using bash (the Bourne
Again shell), there are several key differences to consider in terms of tools, features, and
privileges. Bash is an enhanced and extended version of 55 T sh, so it includes all the features
of sh plus additional functionalities. For instance, Type II scripts, (designed to run on Bourne Again
shell, bash) end with history -c, which typically isn’t a built-in command in the Bourne shell
(sh).

Uncovering Kinsing’s Techniques, Tactics and, Procedures

13

Another point of interest is the 75% decrease in the volume of snippets aimed at eliminating
competition between Type I and Type II scripts. This raises several questions: Is there less
competition among attackers on certain applications, or has the overall competition in the cloud
diminished over time? Has Kinsing shifted its focus from battling for server control to enhancing
its scan-detect-infect capabilities? Or has it become agnostic to competition, which might impede
its main goal of mining operations and increase the risk of detection. It’s also possible that the
threat actor initially included an abundance of snippets to eliminate any competition, but over
time, they refined their approach, tailoring it to specific campaigns and cloud-native environments.

Defense Evasion
Support Attack
Kill Competition

19.4%

4.2%

76.4%

Graph 2: Type I scripts composition of goal,
based on snippet analysis

53.3%

11%

35.7%

Defense Evasion
Support Attack
Kill Competition

Graph 3: Type II scripts composition of goal,
based on snippet analysis

Uncovering Kinsing’s Techniques, Tactics and, Procedures

14

Binaries
These 12 binaries are dropped during different stages and types of attacks. Some (kinsing and
kdevtmpfsi) appear in almost all of the attacks, while others support specific needs in specific
servers.

Binaries: b, curl-aarch64, curl-amd64, kinsing, kinsing_aarch64, kinsing2,
libsystem.so, LifExp.class, xmrig.exe, and kdevtmpfsi

Kinsing binaries: The binaries kinsing, kinsing2, kinsing_aarch64 and b are all the
kinsing malware, as described below in the “Kinsing Malware” section.

The cryptominers: The binaries xmrig.exe, kdevtmpfsl, x, x2, x_arm and x2_arm are
all an xmrig miner, as described below in the “Kinsing’s Mining Campaign” section.

The binary lifexp.class: This is an exploit of the Liferay RCE vulnerability (CVE-2020-7961).

Figure 4: the Liferay exploit

Uncovering Kinsing’s Techniques, Tactics and, Procedures

15

Attack Volume
Upon analyzing the Kinsing campaigns against our honeypots, we discerned varying attack
trends. Some honeypots were assaulted dozens of times daily, while others experienced only
several attacks. On average, honeypots were targeted by Kinsing eight times per day, with the
number of attacks ranging from three to 50. For example, our misconfigured Docker API honeypot
faced an average of 50 attacks daily, fluctuating from hundreds to several daily. This pattern was
consistent with other honeypots. Our Jenkins honeypot underwent an average of 0.2 to 13 attacks
per day, depending on the month, while PostgreSQL encountered between 0.8 and 60 daily
attacks on average.

These attacks varied across specific software types, suggesting that the Kinsing threat actor
is continually shifting targets, focusing on particular applications at different times. When new
vulnerabilities are disclosed, they naturally become a priority, but they may also gain increased
attention months later.

Our Shodan search revealed 2.5 million instances of the various applications targeted, indicating
that Kinsing’s scanning operation is probing millions of instances.

Our research indicates that the Kinsing threat actor incorporates new vulnerabilities upon their
release. Over three months, we observed Kinsing targeting five new vulnerabilities as soon as
they were included in the attack scripts.

Kinsing Malware
In September 2021, CyberArk published “Kinsing: The Malware with Two Faces,” a wonderful blog
that analyzes the binary of Kinsing while comparing it with another malware family: NSPPS. We
took this analysis as a baseline for our analysis and compared the differences.

In their blog, CyberArk found several samples of Kinsing. One of the samples
(SHA256: d247687e9bdb8c4189ac54d10efd29aee12ca2af78b94a693113f382619a175b) was
analyzed thoroughly and considered as a baseline in the blog. CyberArk noted that the binary
weighed 16.87 mb. Other samples were found to be smaller, weighing 5 to 6 mb. The researcher
speculated that the difference in size between the various samples in the wild may have stemmed
from Kinsing testing various versions of the malware or researchers only published partial part of
the binaries they analyzed.

In our work we tested our database to understand how many samples of kinsing we had. We
found 1,550 distinct binaries that bear the name kinsing or kinsing%%%%% (when % is a
random digit or letter).

Uncovering Kinsing’s Techniques, Tactics and, Procedures

16

As seen above, the top five samples appeared in the various attacks covering more than 90% of
all the attacks we’ve seen. That means that the most interesting samples are 5d253 and 787e2.
We focused on the first sample and compared it with the findings in CyberArk’s report to learn
about the changes in the kinsing binary over time.

The first distinguished difference is in terms of size. As mentioned above, sample d2476 was
16.87 mb, while our sample 5d253 was 6.02 mb. When reviewing the differences between the two
samples, we see that the main functionality cited in the CyberArk report remained the same. One
of the main differences was that the older version used pkger, which is a tool for embedding static
files into Go binaries. These functions can’t be found in the newer versions.

62.70%
of the attacks

SHA256
5d2530b809fd069f97b30a5938d471dd2145341b5793a70656aad6045445cf6d

27.98%
of the attacks

SHA256
787e2c94e6d9ce5ec01f5cbe9ee2518431eca8523155526d6dc85934c9c5787c

0.23%
of the attacks

SHA256
564739ea8fa5926d4fa5c9734fed462061960a22e6b8d5c06e94969d97891bf2

0.09%
of the attacks

SHA256
631d0eac8278f4c8090dcc89c905eebdac5ad03db6cf33be1f0a5a39ce6fff1a

0.09%
of the attacks

SHA256
d14b31a0e14615badab1ffcd6086c36f32c21a0cd40df93843efd42295e451bd

Uncovering Kinsing’s Techniques, Tactics and, Procedures

17

Next, it’s written to /tmp under the name kdevtmpfsi, which is obviously the cryptominer, so in
the older version of kinsing the malware contained an embedded version of the cryptominer
that was used.

We now have a new hypothesis to raise to compete with or challenge the one raised by CyberArk
researchers. It could be that the threat actor was looking to or did test the use of a binary with the
cryptominer embedded inside. It looks like it did catch – probably not then (because we know that
kinsing MO is to download the cryptominer from a remote source) and definitely not now because
we see de facto that most of the binaries weight 5 to 6 mbs.

We found various functions that appear in both files. One of them is gopsutil. In the older
kinsing, the version is v2.19.10, while in the newer it’s v3.21.11.

When inspecting what is calling this function you can see that it’s called to use the file ‘x’.

Figure 5: Downloading the cryptominer and renaming it to kdevtmpfsi

Uncovering Kinsing’s Techniques, Tactics and, Procedures

18

In addition, we also inspected the kinsing dynamically. Using Tracee, an open source runtime
security tool, we collected network logs and monitored the communication. As seen in the table
below, these are the C2 communication recorded:

URL Additional
Input

Request
Type

Goal

1 /i GET Set log OK

OK

OK

OK

OK

OK

OK

7 /mg GET Checks if the cryptominer
is running and provides
the PID of the miner

301 or
The PID number example:
“{“Pid”:0}”

Example:
{“Exe”: [“app/Cli”, “.perf.c”,
“perfctl”, “kthreaddi”,
“kthreaddk”, “xmrig”,
<<TRUNCATED>>
“atlas.x86”, “dotsh”],
“Files”: [], “Lol”: [“lol”]}

8 /ki POST Request kill process data

9 /h2 GET Health/connectivity
check

10 /get GET Fetch the next “task”
from C2 server

6 /ms “{“Pid”:0}”POST Send miner’s process
ID

5 /s POST Send new SOCKS5
server’s user/pass/TCP
port to C2 server

4 /o POST Send Exec output
to C2 server

3 /r POST Sends results

2 /l DataPOST Sends log data to C2
server

Response

“{“Id”:802,
Data”:””}”

“{ “User”:”jFcypPQo”,
“Pass”:”AcFAYwAE”,
“Port”:31119 }”

Example:
{“Id”:802,
“Type”:”download_and_
exec”,
“Progress”:227960,
“Total”:1254856, “Thread”:1,
“Port”:1, “Timeout”:1,
“Data”:
http[:]//194[.]38.22.53/spre.
sh
}

Uncovering Kinsing’s Techniques, Tactics and, Procedures

19

Kinsing’s Mining Campaigns
The main goal of Kinsing is to mine Monero. It does this by running a version of XMRIG. Over the
years, we haven’t seen any significant changes in this binary.

We analyzed the miner processes and found that it used the wallet 44MtPEE…

We inspected the wallet over two months and estimated that its average annual revenue would
be 18 XMR, or 3,100 USD, which is quite modest for this kind of operation. It could be that we’ve
failed to understand the full scope of the mining operation.

Figure 6: the cryptominer configuration

Figure 8: Kinsing’s wallet activity

Uncovering Kinsing’s Techniques, Tactics and, Procedures

Figure 7: the cryptominer mining blocks

20

Kinsing’s Rootkits
In the Type II scripts, a rootkit is downloaded and executed to conceal the presence of Kinsing’s
attack components on the infected system.

As illustrated in Figure 9, the rootkit is installed into the /etc/libsystem.so directory. Then,
the /etc/ld.so.preload file is manipulated to ensure that the rootkit is loaded early in the
process startup sequence, even before standard libraries like libc.so. This technique ensures that
the rootkit is deeply embedded and hard to detect.

Technical Analysis of the Rootkit
The rootkit contains encrypted lists of what to hide and how to hide it, including specific files
and network connections. It hooks into various system functions to control what’s visible and
what isn’t. For example, it can hide its own process files and network connections from system
monitoring tools.

The rootkit specifically targets files and processes related to the Kinsing malware (like kinsing,
kdevtmpfsi, and lib_system.so) and makes them invisible to normal system inspection tools.
Rootkits often hook into various system functions to manipulate the behavior of an operating
system, often for malicious purposes like hiding their presence or the presence of other malware.
Here’s an elaboration on what each of the listed functions typically does and how a rootkit might
manipulate them:

Figure 9: Altering LD_preload by Kinsing

access: Checks user’s permissions for a file. Kinsing’s rootkit hooks various files to
return that these files (kinsing, kdevtmpfsi, etca) don’t exist.1

open: Opens a file. Kinsing’s rootkits might hook this to hide the opening of certain
files or to intercept and modify data being read from or written to a file.3

rmdir: Removes a directory. Kinsing’s rootkit could intercept commands aimed at
deleting certain directories like those containing malware components.2

readdir / readdir64: Reads directory entries. Kinsing’s rootkit can manipulate
these functions to hide specific directories or files from directory listings.4

Uncovering Kinsing’s Techniques, Tactics and, Procedures

Uncovering Kinsing’s Techniques, Tactics and, Procedures

21

By hooking these functions, the kinsing rootkit can effectively control how the operating system
interacts with files, directories, and file information. This allows the rootkit to hide its presence
and the presence of other malware, manipulate file operations, and maintain persistence on the
infected system. Such manipulations can be very challenging to detect and remove.

It’s worth mentioning TrendMicro’s excellent analys is from 2020, and since it’s exactly the same
hash value:

(SHA256=C38C21120D8C17688F9AEB2AF5BDAFB6B75E1D2673B025B720E50232F888808A)
we can conclude that the Kinsing threat actor is satisfied with this tool and thus invested no
attention to improve the rootkit over these past three years.

Uncovering Kinsing’s Techniques, Tactics and, Procedures

lstat / lstat64 and __lxstat / __lxstat64: Similar to stat, but for symbolic
links. Kinsing’s rootkit can manipulate these to hide or change information about links,
especially those pointing to malicious files.

6

fopen / fopen64: Opens a file and returns a file stream. Kinsing’s rootkit might hook
this to control access to specific files or to manipulate file contents.7
link: Creates a new hard link to an existing file. Kinsing’s rootkit could use this to
create unauthorized links to sensitive files or to protect malware files.8
unlink: Deletes a name from the filesystem. If a name was the last link to a file and
no processes have the file open, the file is deleted. Kinsing’s rootkit might intercept this
to prevent deletion of certain files.

9

unlinkat: Similar to unlink, but can operate on a directory file descriptor. Kinsing’s
rootkit might hook this to protect specific files or directories from being deleted.10

stat / stat64 and __xstat / __xstat64: Retrieves information about a file.
Kinsing’s rootkit might alter the results to hide file modifications or the existence of
certain files.

5

https://www.trendmicro.com/en_us/research/20/k/analysis-of-kinsing-malwares-use-of-rootkit.html

2222

Kinsing’s Targets
Targets can be categorized into two groups: the applications and environments that Kinsing
targets, and the personal accounts of the victims encountered in the wild. In this chapter, we
present an analysis of both aspects.

Applications that Kinsing Targets (Vulnerabilities and
Misconfigurations)
Over the past five years, we’ve identified at least 75 software applications that have been
targeted by Kinsing. Our observations indicate that Kinsing exploits both vulnerabilities and
misconfigurations. For example, there are instances of misconfigured Docker APIs without
authentication, allowing anyone to deploy a container. In such cases, an Alpine container is
deployed with a malicious command that downloads and executes the script d.sh. It appears
that the majority of the software targeted by Kinsing is targeted because of vulnerabilities.
Notably, the recent vulnerabilities in Openfire and RocketMQ were exploited within one to two
weeks after their disclosure.

In Appendix 3, we provide a comprehensive list of the applications and environments targeted, as
per our analysis. Our analysis is not exhaustive. Even with the assistance of ChatGPT, we were
unable to complete the list of targets, as some remain unclassified. We encourage you to share
your insights or hypotheses regarding the potential targeted applications or environments, which
could help us in presenting a more complete assessment of the threat landscape.

Figure 10: Kinsing’s targeted applications

Kinsing’s Targets

23

Kinsing’s victims in the wild (OSINT)
You can see many questions in programmers’ forums such as Stack Overflow, ask ubuntu, GitHub,
and forums for a specific application that Kinsing targeted, as well as a plethora of questions in
Chinese-speaking forums.

While decoding the base64 is fairly
easy, without doing so, it’s very hard to
understand what’s going on here. Once
it’s decoded, as illustrated in Figure
12, there are some basic commands of
process kill, implementation of curl and
a command to download the primary
payload pg2.sh.

In most cases the programmers ask
if they were infected by a malware,
indicating that they observe high CPU
by Kdevtmpfsi and sometimes mention
a process by the name Kinsing. Often,
they add the download script evidence
and sometimes the targeted application,
which all help to build a mosaic of
Kinsing’s history over time. For instance,
here you can find a question about
an unwanted PostgreSQL query. As
illustrated in Figure 11, a table is created
and a record with a bash command is
inserted.

Figure 11: Initial Postgres remote code execution comand

Figure 12: decoded postgress payload

Kinsing’s Targets

24

Another example taken from the Laravel forum on Reddit, as the programmer is providing some
evidence of infection and how this can be detected and fixed.

These examples illustrate the justified and understandable security knowledge and experience
gaps that programmers, data engineers and other practitioners display when facing these
troubling indications. The abundance of such indications also illustrates Kinsing’s scope and the
extent of its attacks.

Figure 13: A forum post about Kinsing

Kinsing’s Targets

https://www.reddit.com/r/laravel/comments/lh6r5h/psa_laravel_842_has_vulnerability_cve20213129/?rdt=37510

25

Mapping Kinsing’s Campaigns to the
MITRE ATT&CK Framework
Our investigation showed that Kinsing has used some common techniques throughout the
campaigns (further details in Appendix 2):

Active
Scanning:
Vulnerability
Scanning
(T1595.002)

Acquire
Infrastructure:
Server
(T1583.004)

Acquire
Infrastructure:
Domains
(T1583.001)

Exploit
Public-Facing
Application
(T1190)

Valid
Accounts
(T1078)

Command
and Scripting
Interpreter:
Unix Shell
(T1059.004)

Native API
(T1106)

User
Execution:
Malicious File
(T1204.002)

Command
and Scripting
Interpreter:
PowerShell
(T1059.001)

System
Services:
Service
Execution
(T1569.002)

Create or
Modify
System
Process: Unix
Shell
Configuration
Modification
(T1543.004)

Create or
Modify
System
Process:
Systemd
Service
(T1543.003)

Scheduled
Task:
Scheduled
Task
(T1053.005)

File and
Directory
Permissions
Modification:
Linux File and
Directory
Permissions
Modification
(T1546.004)

Scheduled
Task/Job: Cron
(T1053.003)

Container
Administratio
n Command
(T1609)

Deploy
Container
(T1610)

External
Remote
Services
(T1133)

Scheduled
Task/Job: Cron
(T1053.003)

Command
and Scripting
Interpreter:
Python
(T1059.006)

Impair
Defenses:
Disable or
Modify
System
Firewall
(T1562.004)

Impair
Defenses:
Disable or
Modify Tools
(T1562.001)

Indicator
Removal on
Host: File
Deletion
(T1070.004)

File and
Directory
Permissions
Modification:
Linux File and
Directory
Permissions
Modification
(T1222.001)

Account
Discovery:
Local Account
(T1087.001)

Brute Force:
Password
guessing
(T1110.001)

Unsecured
Credentials:
Bash History
(T1552.003)

Network
Service
Scanning
(T1046)

File and
Directory
Discovery
(T1083)

Process
Discovery
(T1057)

Lateral Tool
Transfer
(T1570)

Remote
Services: SSH
(T1021.004)

Remote
System
Discovery
(T1018)

Application
Layer
Protocol: Web
Protocols
(T1071.001)

Exfiltration
Over C2
Channel
(T1041)

Proxy:
External
Proxy
(T1090.002)

Ingress Tool
Transfer
(T1105)

Data
Destruction
(T1485)

Inhibit System
Recovery
(T1490)

Resource
Hijacking
(T1496)

Unsecured
Credentials:
Private Keys
(T1552.004)

Application
Layer
Protocol: DNS
(T1090.004)

Obfuscated
Files or
Information:
Software
Packing
(T1027.002)

Disabling
Security Tools
(T1485)

Masquerading
: Match
Legitimate
Name or
Location
(T1036.005)

File and
Directory
Permissions
Modification:
Linux File and
Directory
Permissions
Modification
(T1222.002)

Reconnaissance Resource
Development

Initial Access Execution Defense evasionPersistance Credential
Access

Discovery Command and
Control

Exfiltration Impact

Mapping Kinsing's Campaigns to the MITRE ATT&CK Framework

26

Detection and mitigation
Kinsing targets Linux and Windows systems, often by exploiting vulnerabilities in web
applications or misconfigurations such as Docker API and Kubernetes to run cryptominers. To
detect Kinsing and similar malware, one can employ a combination of methods:

Threat intelligence
• Information: Keep up to date with the latest threat intelligence reports on tactics, techniques,

and procedures used by Kinsing operators.
• Known Indicators of Compromise (IoCs): such as the ones included in this report.
• Awareness: Train staff to recognize signs of a compromise, such as phishing attempts that

could introduce Kinsing into the network.

Vulnerability management
• Patch management: Regularly update and patch systems to close off vulnerabilities that

Kinsing could exploit.
• Configuration audits: Regularly audit configurations, especially for exposed services like

Docker, to ensure they’re not misconfigured.

Container security
• Docker daemon security: Ensure the Docker daemon isn’t exposed to the internet without

proper authentication.
• Container monitoring: Implement monitoring solutions specifically designed for containerized

environments.

Behavioral analysis
• Anomaly detection: Employ ystems that can learn baseline behavior and detect anomalies.
• CPU and memory usage monitoring: Continuous high usage can indicate cryptomining

activity.
• System performance monitoring: A sudden drop in system performance might suggest

malicious processes are running.
• Unusual processes: Look for processes that aren’t typically part of the system’s operations.
• Process names: Kinsing may attempt to masquerade as a legitimate process but may be

detected by close inspection of process names and paths.
• Unusual outbound traffic: Check for an increased volume of outbound traffic, especially to

known mining pools.
• Network connections: Look for connections to suspicious IP addresses and ports typically

used by miners.
• Unexpected changes: Monitor for unexpected changes to system files and directories.
• Rootkits: Look for signs of rootkit installation that can hide malicious activity.

Detection and mitigation

27

Enhancing Cloud Security with
Aqua CNAPP
In today’s landscape of escalating cyber threats, organizations need to establish a
comprehensive multi-layered security strategy to safeguard their digital transformation. The
Aqua Cloud Native Application Protection Platform (CNAPP) provides robust end-to-end
protection for your cloud native applications, mitigating risks across the full lifecycle and
fortifying workloads against attacks in production.

To prevent potential threats like Kinsing, proactive measures such as hardening workloads
pre-deployment are crucial. Aqua CNAPP allows security teams to detect and mitigate known
vulnerabilities in their container images, helping prioritize patching based on many factors such
as active exploitation in the wild and the availability of PoC (proof-of-concept) exploits. This
significantly reduces the attack surface and closes off potential entry points for attackers.

Enchancing Cloud Security with Aqua CNAPP

Figure 14: The Aqua platform fails the build when a high rank vulnerability is detected

28

Enchancing Cloud Security with Aqua CNAPP

Figure 15: Openfire vulnerability CVE-2023-32315 details in the Aqua platform

While vulnerability scanning and timely patching play a pivotal role in prevention, ensuring runtime
protection is equally essential. Aqua CNAPP addresses this need with intelligence-driven runtime
protection and quickly deploys granular controls layered throughout your environment. Drift
prevention seamlessly enforces the container immutability to identify and block unauthorized
processes in running containers with no downtime.

Beyond traditional signature-based malware detection, Aqua CNAPP offers advanced protection
against unknown and zero-day threats. Leveraging real-world threat intelligence from Aqua
Nautilus, eBPF-based behavioral detection enables security teams to identify and respond to
behavioral anomalies that may indicate a compromise, such as manual command executions and
lateral movements associated with Kinsing attacks.

For example, here’s how Aqua detects the Kinsing attack exploiting the Openfire vulnerability:

29

Enchancing Cloud Security with Aqua CNAPP

Figure 16: The Kinsing attack timeline in the Aqua platform

Figure 17: Drift detection in the Aqua platform: The file kdevtmpfsi (a Monero cryptominer) is
downloaded into the container

Copyright ©2024 Aqua Security Software Ltd., All Rights Reserved Copyright ©2024 Aqua Security Software Ltd., All Rights Reserved

Aqua Nautilus is a security research team whose mission is to analyze the evolving cloud native threat landscape, uncovering new threats targeting
containers, Kubernetes, serverless, applications’ software supply chains and cloud infrastructure. The team aims to help Aqua customers and the
community at large protect against the unknown, zero-day and emerging threats, turning insights from real-world attacks into powerful, intelligence-driven
protection within the Aqua Platform. For more infomation, visit https://www.aquasec.com/research/

Schedule demo ›

30

Aqua CNAPP offers comprehensive protection for cloud native workloads everywhere they run
– whether in the public cloud, on-premises, or across hybrid and multi-cloud environments. By
leveraging Aqua CNAPP, organizations can enhance their ability to detect and mitigate threats
in real time, thereby ensuring a robust security posture even against advanced and persistent
threats.

Enchancing Cloud Security with Aqua CNAPP

https://www.aquasec.com/research/http://
https://www.aquasec.com/
https://www.aquasec.com/demo/
https://www.aquasec.com
https://twitter.com/AquaSecTeam
http://www.linkedin.com/company/aquasecteam/mycompany/
https://www.youtube.com/c/AquasecTeam
https://github.com/aquasecurity

31

Appendix 1: IOCs Table
https://github.com/nautilus-aqua/Kinsing-Indication-of-Compromise

Appendix 1: IOCs Table

https://github.com/nautilus-aqua/Kinsing-Indication-of-Compromise

32

Appendix 2: In-Depth Analysis of
Scripts
Type I Scripts – Comprehensive Analysis
We analyzed 44 Type I scripts. They are 97% similar; the only difference is in one snippet
responsible for creating a cron job to download the script from the attacker’s C2 server. The
difference is within the name of the script, as each script calls itself. We analyzed each row in the
script based on three major concepts: contributing to the attack flow, defense evasion items, and
killing competition.

Type l scripts: scg.sh, sup.sh, wpf.sh, an.sh, cp2.sh, do.sh, ex.sh, hb.sh,
kn.sh, ku.sh, lf.sh, lh2.sh, lr.sh, md.sh, mo.sh, ni.sh, pa.sh, pg.sh,
ph2.sh, sa.sh, sc.sh, sp.sh, st.sh, tf.sh, tm.sh, tr.sh, vb.sh, ws.sh,
a.sh, c.sh, d.sh, f.sh, j.sh, k.sh, m.sh, n.sh, o.sh, p.sh, r.sh, s.sh,
t.sh, w.sh, spr.sh, unk.sh

Contributing to the attack flow
These snippets are designed to facilitate the attack of Kinsing:

1. Setting the kinsing file according to the server’s architecture.

Figure 18: Kinsing binaries download code

Appendix 2: In-Depth Analysis of Scripts

33

2. Setting up a backdoor, by creating a cron job to download the shell script (the current main
payload) again. In Figure 19 below, you can see that the code is designed to look in crontab
for the IP address. If the IP isn’t found the code is designed to download the script wpf.sh,
into crontab.

Defense evasion items
These snippets are designed to evade detection of the malicious activities:

1. Stopping and deleting security tools (selinux, aegis and apparmor).

Figure 19: setting a cronjob

Figure 20: disabling and removing security applications

Appendix 2: In-Depth Analysis of Scripts

34

2. In Figure 21 below, you can see two commands that significantly alter the security posture of
the victim system by removing firewall protections. The command ufw disable turns off the
UFW firewall and stops UFW from enforcing any of its configured rules. The second command
iptables -F, is flushing iptables rules effectively removes all filtering and forwarding rules.

Killing competition
These snippets are designed to stop competitors’ malicious activities:

1. Stopping processes: The snippet, in Figure 22 below, targets specific processes for termination
while iterating through all entries in the /proc directory.

2. Killing processes: In Figure 23 below, there are few examples of commands aimed at detecting
specific processes or IP addresses or text in files in order to kill the relevant processes, which
are all part of competitors’ campaigns.

Figure 23: terminating competing attacks

Figure 21: disabling firewall and flushing iptables

Figure 22: iterating over /proc directory

Appendix 2: In-Depth Analysis of Scripts

35

Type II Scripts – comprehensive analysis
We analyzed 27 type II scripts. Like the Type I scripts, these scripts bear 97% similarity. We
analyzed each row in the script based on 3 major concepts: contributing to the attack flow,
defense evasion items and killing competition.

Type II scripts: lr2.sh, pg2.sh, tr2.sh, vml.sh, se.sh, ae.sh, ap.sh, bg.sh,
ce.sh, cf.sh, cp.sh, ge.sh, gi.sh, gl.sh, ki.sh, lh.sh, mi.sh, mt.sh,
ph.sh, py.sh, rm.sh, sm.sh, vm.sh, xx.sh, kos.sh, tc.sh, acb.sh

Below we will cover only the differences from Type I scripts.

Contributing to the attack flow
1. Implementing a curl function in case curl, wget or other utilities aren’t installed on the

server.

Figure 24: implementing a curl application

Appendix 2: In-Depth Analysis of Scripts

36

Defense evasion items
1. Deploying a rootkit to hide the malicious processes. You can read more about it in the rootkit

section in the main section of the report.

Killing competition
1. Extended list of specific processes for termination while this snippet is iterating through all the

entries in the /proc directory (compared with Type I scripts).
2. The long list of process kills is now divided into functions, as can be seen in Figures 26 and 27

below:

Figure 26: cleaning cron from competing attacks Figure 27: eliminating competing attacks

Figure 25: rootkit download and deployment code

Appendix 2: In-Depth Analysis of Scripts

37

Auxiliary scripts analysis
These 14 scripts are often dedicated to specific applications that are dropped and executed as
part of the attack kill chain and set a specific purpose. In this section we review each of these
scripts.

Auxiliary scripts: cron.sh, al.sh, 1.ps1, ci.sh, du.sh, rv.sh, cpr.sh, cpu.sh,
uninstall.sh, wbw.xml, wb.xml, k.xml, kk.xml, ll.sh

cron.sh
This script contains 161 rows that are designed to kill the competition (see Type I or Type II scripts
above), a few lines of defense evasion, and persistence by creation of a cron job that downloads
and runs the script unk.sh, which is a Type I script, possibly standing for “unified Kinsing.”

al.sh
This script is designed to disable and remove specific security and monitoring components related
to Alibaba Cloud and Tencent Cloud services from a Linux system, as can be seen in Figure 20.

Appendix 2: In-Depth Analysis of Scripts

38

Figure 28: some snippets from the powershell

The PowerShell 1.ps1
This PowerShell script appears to be involved in downloading, installing, and executing a
cryptominer on the host system.

The script sets up a number of variables for URLs, file sizes, and names related to a
cryptocurrency miner (xmrig.exe) and its configuration file (config.json)

The script checks if the miner executable and its configuration file exists at the specified paths. If
they do, it checks their sizes against the expected sizes and updates them if they don’t match. If
the files don’t exist, the script downloads them using the update function. Next, the PowerShell
checks if the miner process is running. If it’s not running, it starts the miner process in a hidden
window.

Appendix 2: In-Depth Analysis of Scripts

39

ci.sh
This is actually not an auxiliary script. It’s a script that launches an attack on the Citrix NetScaler
application. As opposed to Type I and Type II scripts, there are three different cron jobs to ensure
persistence on the Citrix server.

Furthermore, in this case, Kinsing malware isn’t downloaded. This is the most distinct signature of
this threat actor yet, but in this case another binary is downloaded by the name of klli
(MD5 568f7b1d6c2239e208ba97886acc0b1e). This, however, is found on the Kinsing download
server and thus we affiliate this attack with the Kinsing campaigns.

Figure 29: From the ci.sh script

du.sh
The initial script is encoded (base64).

Figure 30: the du.sh script

Appendix 2: In-Depth Analysis of Scripts

40

When decoded, the script seems to be designed to ensure that only one instance of a process
named kinsing that is using the file /tmp/linux.lock is running. If there are multiple such
processes, it kills all of them except the one using the file.

Figure 31: The decoded script

Appendix 2: In-Depth Analysis of Scripts

41

rv.sh
This is an open-source reverse shell script that can be found on GitHub - here.
As illustrated in Figure 32 below, the Kinsing threat actor modified the script to open a reverse
shell to a server under his control.

Appendix 2: In-Depth Analysis of Scripts

Figure 32: the rv.sh script, a reverse shell script

https://github.com/lukechilds/reverse-shell

42

cpr.sh
This script looks like it’s cleaning Kinsing from the server. Maybe it’s a revert script to clean
Kinsing from an infected system or a preparation script before cp, to prepare the server for
infection.

Appendix 2: In-Depth Analysis of Scripts

Figure 33: the cpr.sh script

43

uninstall.sh
This script is very similar to the al.sh script which cleans the defense controls of Alibaba Cloud.

Figure 34: the uninstall script

Appendix 2: In-Depth Analysis of Scripts

44

Figure 38: kk.xml exploit

On Windows machines, a PowerShell (1.ps1) is dropped and executed.

k.xml and kk.xml
The purpose of these payloads is to exploit XML parsers that are vulnerable to XML external
entity attacks. If the attack is successful, the attacker can read the contents of the /opt/
zimbra/conf/localconfig.xml or ../conf/localconfig.xml file by examining the value of
the wocaq entity. This can lead to information disclosure, potentially revealing sensitive data or
configurations.

wb.xml and wbw.xml
These two xml files seem to have the same purpose. Both are designed to exploit the Oracle
WebLogic Server RCE vulnerability CVE-2020-14883. On Linux servers the wb.sh shell script is
dropped and executed.

Figure 35: Weblogic Linux exploiting script

Figure 37: k.xml exploit

Appendix 2: In-Depth Analysis of Scripts

Figure 36: Weblogic Windows exploiting script

https://avd.aquasec.com/nvd/2020/cve-2020-14883/

45

ll.sh
This is an extended snippet that appears both in Type I and Type II scripts. It’s a list of specific
processes for termination while this snippet is iterating through all the entries in the /proc
directory. It could be that the Kinsing threat actor often updates this snippet and thus created an
external script to support a frequent content update.

Appendix 2: In-Depth Analysis of Scripts

Figure 39: iterating over /proc directory

46

Appendix 3: MITRE table with details
Script

ex.sh

h2.sh

f.sh

hb.sh

ge.sh

j.sh

gi.sh

k.sh

gl.sh

ki.sh

kos.sh

h.sh

kn.sh

bg.sh

cp.sh

c.sh

cp2.sh

ce.sh

d.sh

cf.sh

do.sh

a.sh

acb.sh

ae.sh

an.sh

ap.sh

Classification

Type I

Type I

Type I

Type

Type II

Type I

Type II

Type I

Type II

Type II

Type II

Type I

Type I

Type II

Type II

Type I

Type I

Type II

Type I

Type II

Type I

Type I

Type II

Type II

Type I

Type II

Application

Apache HTTP

Hadoop Yarn

Apache Flink

H2 database

GeoServer

Jenkins

GitLab CE

Kafka

GlassFish

Kibana

Unsolved

Hadoop Yarn

Knife

BIG-IP TMUI

Unsolved

Confluence

Unsolved

Celery

Docker API

Confluence

Apache Dubbo

Apache

Apache CouchDB

Apereo CAS

Ansible

Apache Spark

CVE/Misconfiguration

CVE-2021-41773

CVE-2017-15718

CVE-2020-17519

unauthenticated

CVE-2023-35042

CVE-2018-1000861

CVE-2021-22205

CVE-2023-25194

Weak password

CVE-2019-7609

Unsolved

CVE-2017-15718

CVE-2016-4326

CVE-2020-5902

Unsolved

CVE-2021-26084

Unsolved

unauthenticated

Misconfiguration

CVE-2022-26134

CVE-2019-17564

4.1-rce

CVE-2021-41773

CVE-2020-10684

CVE-2022-24706

CVE-2020-9480

ku.sh

lf.sh

Type I

Type I

Kubernetes

Liferay

Misconfiguration

CVE-2020-7961

Appendix 3: MITRE table with details

47

pg.sh

mi.sh

sa.sh

lr.sh

py.sh

ni.sh

sm.sh

lh.sh

ph.sh

mt.sh

scg.sh

m.sh

rm.sh

p.sh

pg2.sh

mo.sh

sc.sh

lr2.sh

r.sh

o.sh

sp.sh

lh2.sh

ph2.sh

n.sh

se.sh

md.sh

s.sh

pa.sh

Type I

Type II

Type I

Type I

Type II

Type I

Type II

Type II

Type II

Type II

Type I

Type I

Type II

Type I

Type II

Type I

Type I

Type II

Type I

Type I

Type I

Type I

Type I

Type I

Type II

Type I

Type I

Type I

postgresql

Micro Focus
Operation Bridge
Manager

SaltStack

Laravel Ignition

Python PIL/Pillow

Apache NiFi

SambaCry

log4j

PHPUnit

Metabase

Spring Cloud Gateway

Magento

Apache Rocketmq

PHP-FPM

postgresql

MobileIron Core &
Connector

Scrapyd daemon

Laravel Ignition

Redis

Unsolved

Supervisor
3.0a1 – 3.3.2 RCE

log4j

PHPUnit

Unsolved

Unsolved

Unsolved

Solr Dataimport

PhpMyAdmin
unauthenticated

CVE-2020-11854

CVE-2020-11651

CVE-2021-3129

CVE-2018-16509

Weak password

CVE-2017-7494

CVE-2021-44228

CVE-2017-9841

CVE 2023-38646

CVE-2022-22947

CVE-2022-24086

CVE-2023-33246

CVE-2019-11043

unauthenticated

CVE-2020-15505

XXE

CVE-2021-3129

unauthenticated

Unsolved

CVE/Misconfiguration

CVE-2021-44228

CVE-2017-9841

Unsolved

Unsolved

Unsolved

CVE-2019-0193

CVE-2016-5734

Script Classification Application CVE/Misconfiguration

spr.sh Other Apache Spark CVE-2022-33891

Appendix 3: MITRE table with details

48

unk.sh

tc.sh

w.sh

spri.sh

vb.sh

tf.sh

wb.sh

st.sh

vm.sh

tm.sh

wpf.sh

sup.sh

vml.sh

tr.sh

ws.sh

t.sh

vml.sh

tr2.sh

xx.sh

Type I

Type II

Type I

Type I

Type I

Type I

Type I

Type I

Type I

Type I

Type I

Type I

Type II

Type I

Type I

Type I

Type I

Type II

Type II

Ubuntu

Apache Tomcat

Weave Scope

Unsolved

Unsolved

ThinkCMF

WebLogic server

Strapi

Unsolved

TerraMaster NAS
(TNAS)

Word press file
manager

Supervisor11610

Unsolved

Unsolved

WSO2 products

ThinkPHP5RCE

Unsolved

Unsolved

XXL-JOB RCE

General

Weak password

Unauthenticated

Unsolved

Unsolved

ThinkCMF X1.6.0

CVE-2020-14883 /
CVE-2020-14882 /
CVE-2020-14750

CVE-2019-19609

Unsolved

CVE-2022-24990

CVE-2020-25213

CVE-2017-11610

Unsolved

Unsolved

CVE-2022-29464

CVE-2017-9841

Unsolved

Unsolved

CVE-2020-23814

Script Classification Application CVE/Misconfiguration

Appendix 3: MITRE table with details

49

Appendix 3: MITRE table with details
Tactic Technique MITRE ID

T1222.001

Kinsing’s Operation

Reconnaissance Active Scanning:
Vulnerability Scanning

T1595.002 Kinsing’s scanning
infrastructure is
looking for vulnerabilities
and misconfigurations.

Persistence Event Triggered
Execution: Unix Shell
Configuration
Modification

T1546.004 In the main payload
kinsing is modifying
.ssh/authorized_keys
to maintain access.

Defense
Evasion

Impair Defenses:
Disable or Modify
System Firewall

T1562.004 In the main payload
kinsing is disabling the
ufw firewall and flushing
iptables.

Defense
Evasion

Impair Defenses:
Disable or Modify
Tools

T1562.001 In the main payload
kinsing is disabling
security tools and
services like apparmor
and selinux.

Defense
Evasion

Indicator
Removal on Host:
File Deletion

T1070.004 In the main payload
kinsing is deleting logs
(/var/log/syslog)
and other files to cover
tracks.

Defense
Evasion

File and Directory
Permissions
Modification: Linux and
Mac File and Directory
Permissions
Modification

In the main payload
kinsing is changing
attributes of various
directories
(chattr commands) to
prevent detection.

Execution Command and
Scripting Interpreter:
Unix Shell

T1059.004 Kinsing is execution of
shell commands and
scripts.

Appendix 3: MITRE table with details

50

Discovery Network Service
Scanning

T1046 In the main payload
kinsing is using netstat
to discover network
services and potentially
identify targets for
further actions.

Persistence Create or Modify System
Process: Systemd
Service

T1543.003 In the main payload
kinsing is installing a
systemd service for
persistence.

Persistence Scheduled Task/Job:
Scheduled Task

T1053.005 In the main payload
kinsing is installing a
systemd service for
persistence.

Credential
Access

Account
Discovery: Local
Account

T1087.001 In the main payload
kinsing is deleting users
(userdel) to hinder
account discovery.

Impact Data Destruction T1485 In the main payload
kinsing is deleting files to
impair functionality and
cover tracks.

Impact Inhibit System
Recovery

T1490 In the main payload
kinsing is deleting logs
(/var/log/syslog)
and other files to cover
tracks.

Execution Native API T1106 In the main payload
kinsing is killing
processes through native
APIs.n.

Execution User Execution:
Malicious File

T1204.002 In the main payload
kinsing is executing
a malicious binary to
maintain persistence
or perform malicious
actions.

Tactic Technique MITRE ID Kinsing’s Operation

Appendix 3: MITRE table with details

51

Persistence Create or Modify
System Process

T1543.004 Kinsing is creating a
systemd service named
“Bot” in the Type II
scripts

Defense
Evasion

Obfuscated Files or
Information

T1027.002 Kinsing’s malware and
rootkit are often packed
often by UPX

Discovery File and Directory
Discovery

T1083 In the main payload
kinsing is running on
the /proc and other
filesystems to detect
processes

Command and
Control

Application Layer
Protocol: Web
Protocols

T1071.001 In the main payload
kinsing is using curl or
wget to communicate
with command and
control (C2) servers.

T1583.001Resource
Development

Acquire Infrastructure:
Domain

Kinsing is using
vocaltube.ru as a
domain. Not sure he
owns it.

Initial Access Exploit
Public-Facing
Application

T1190 In many cases this
is the initial access
vector kinsing is using,
for instance Openfire,
Wordpress etc.

Credential
Access

Brute Force T1110.001 Kinsing is trying to
exploit applications and
services such as SSH,
Tomcat admin and others

Command and
Control

Application Layer
Protocol: DNS

Kinsing is using
vocaltube.ru to retrieve
the C2 server IP address.

T1071.004

Command and
Control

Application Layer
Protocol: Proxy

T1090.002 Kinsing is using proxies
for the mining operation.

Tactic Technique MITRE ID Kinsing’s Operation

Appendix 3: MITRE table with details

52

Command and
Control

Ingress Tool Transfer T1105 The script downloads
external files (miner
and config), which
is indicative of
transferring tools or
files into a compromised
environment.

Exfiltration Exfiltration Over C2
Channel

T1041 The kinsing malware can
exfiltrate data over the
C2 server.

Execution System Services:
Service Stop

T1569.002 In the main payload
kinsing is issuing
commands to stop
various services, a
technique that could be
used to hinder security
services or other critical
functionalities on the
system.

Execution Command and
Scripting Interpreter:
PowerShell

T1059.001 The script is written in
PowerShell, a powerful
scripting language used
for automating tasks on
Windows systems, which
can be used for malicious
purposes in this context.

Defense
Evasion

Impair Defenses:
Disable or Modify Tools

T1629.003 Stopping processes
might also be used to
disable security tools
that are running on the
system.

Defense
Evasion

Modify Registry T1112 The script uses
SchTasks.exe to
create a scheduled task
for persistence, which
involves modifying the
Windows registry.

Tactic Technique MITRE ID Kinsing’s Operation

Appendix 3: MITRE table with details

53

Execution Container Administration
Command

T1609 Kinsing is running
Ubuntu:latest on
misconfigured docker
API with a malicious
cmd that downloads
and executes the main
payload d.sh

Execution Deploy Container T1609 Kinsing is running
Ubuntu:latest on
misconfigured docker
API with a malicious
cmd that downloads
and executes the main
payload d.sh

Defense
Evasion

Obfuscate/Encrypt Files T1140 The script du.sh is
encoded in base64,
there are further
examples to kinsing
encoding (base64)
snippets

Defense
Evasion

Masquerading: Match
Legitimate Name or
Location

T1036.005 In Linux the miner is
called kdevtmpfsi,
in Windows the miner
is named “sysupdate.
exe”, which could be an
attempt to masquerade
as a legitimate system
update process.

Initial Access External Remote
Services

T1133 Kinsing was executed
in an Ubuntu container
deployed via an open
Docker daemon API.

Defense
Evasion

File and Directory
Permissions Modification:
Linux and Mac File and
Directory Permissions
Modification

T1222.002 Kinsing has used chmod
to modify permissions on
key files for use.

Discovery Process Discovery T1057 Kinsing has used ps to
list processes.

Tactic Technique MITRE ID Kinsing’s Operation

Appendix 3: MITRE table with details

54

T1552.003

Discovery Remote System
Discovery

T1018 Kinsing has used a script
to parse files like /etc/
hosts and SSH known_
hosts to discover
remote systems.

Impact Resource Hijacking T1496 Kinsing has created
and run a Bitcoin
cryptocurrency miner.

Persistence Scheduled Task/Job:
Cron

T1053.003 Kinsing has used crontab
to download and run
shell scripts every minute
to ensure persistence.

Credential
Access

Unsecured Credentials:
Bash History

Kinsing has searched
bash_history for
credentials.

Credential
Access

Unsecured Credentials:
Private Keys

T1552.004 Kinsing has searched for
private keys.

Initial Access Valid Accounts T1078 Kinsing has used valid
SSH credentials to
access remote hosts.

Lateral
Movement

Remote Services: SSH T1021.004 Kinsing has used SSH for
lateral movement.

Defense
Evasion

Rootkit T1014 Kinsing is using a rootkit
to hide the cryptomining
operation.

Execution Command and Scripting
Interpreter: Python

T1059.006 Kinsing is execution
python commands for
instance in the rv.sh
script

Tactic Technique MITRE ID Kinsing’s Operation

Appendix 3: MITRE table with details

